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ABSTRACT

A plasticity-induced crack-closure model was used to study fatigue crack growth and

closure in thin 2024-T3 aluminum alloy under constant-R and constant-Kmax threshold

testing procedures. Two methods of calculating crack-opening stresses were compared.

One method was based on contact-K analyses and the other on contact crack-opening-

displacement (COD) analyses. These methods gave nearly identical results under

constant-amplitude loading but under load-reduction (threshold) simulations the contact-K

analyses gave lower crack-opening stresses than the contact-COD method. Crack-

opening stresses determined from the compliance-offSet method agreed with results from

the COD analyses. But crack-growth predictions tend to support the use of contact-K

analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in

opening stresses in the near threshold regime for low-constraint (plane-stress) and high

applied stress levels for both low and high stress ratios. Under low applied stress levels

and high constraint (near plane-strain), a rise in opening stresses was not observed near

threshold conditions. But crack-tip-opening displacements (CTOD) were of the order of

measured oxide thicknesses in the 2024 alloy and these oxide layers may have an influence

on opening stresses. In contrast, under constant-Kmax testing the CTOD near threshold

conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-

plastic deformations under both constant-R and constant-Kmax threshold simulations were

several times larger than the expected oxide thicknesses. Thus, residual-plastic

deformations, in addition to oxide and roughness, play an integral part in threshold

development.

INTRODUCTION

In 1970, Paris [1] proposed a method to determine very slow fatigue-crack-growth

rates and showed the development of a fatigue-crack-growth threshold, AKth. Later,

Saxena et.al [2] and an ASTM Task Group developed a standard test method for near-

threshold crack-growth-rate measurements. The use of thresholds in the design of

structures subjected to cyclic loading has greatly increased over the past 20 years.



Especially in components subjected to high-cyclic loading, such as engines or propellers,

crack propagation to failure occurs very rapidly and thresholds play a large role in life

prediction. Damage tolerance methods are currently being proposed for use under high-

cyclic fatigue conditions and large-crack thresholds are controlling the design of these

components. However, continued work in the threshold regime over the past decade

suggests that current methods of defining the fatigue-crack-growth threshold are

influenced by the test method and reveal significant differences between fatigue-life

predictions based on small-crack growth rate behavior compared to that based on large-

crack (threshold) behavior. These issues raise questions on the use of the thresholds in the

design of structures subjected to cyclic loads. The various forms of fatigue-crack closure

(plasticity, roughness and oxide debris) have all been proposed to occur during the

threshold development. Thus, a complete understanding of thresholds must address all of

the possible forms of closure.

Elber [3] observed that fatigue-crack surfaces can contact each other even during

tension-tension cyclic loading and he subsequently developed the crack-closure concept.

This observation and the explanation of crack-closure behavior revolutionized damage-

tolerance analyses and began to rationally explain many crack-growth characteristics, such

as crack-growth retardation and acceleration. Since the discovery of plasticity-induced

crack closure, several other closure mechanisms have been identified, such as oxide- [4]

and roughness-induced [5] closure, which appear from the literature to be more relevant in

the near-threshold regime. However, observations of fatigue-crack surfaces near

threshold conditions, which show roughness and/or oxides, do not readily show the extent

of the residual-plastic deformations (without strain measurements or X-ray diffraction) in

relation to oxide thicknesses and roughness contributions.

The objective of this paper is to use a two-dimensional, plasticity-induced crack-

closure model [6,7] to study fatigue-crack growth and closure in a thin-sheet 2024-T3

aluminum alloy under constant-R and constant-Kmax threshold testing procedures.

Analyses were made on a middle-crack tension, M(T), specimen using the modified strip-

yield model, as shown in Figure 1. Two methods of calculating crack-opening stresses

were compared. One based on contact-K analysis and the other on contact crack-

opening-displacement (COD) analyses. Comparisons were made between these

calculation methods and values determined from remote crack-mouth-opening

displacements (CMOD) using the 1 or 2% compliance-of¢_et method. Crack-growth

simulations, using the crack-closure model, of threshold testing procedures were made for

a variety of conditions. The effects of constraint (plane-stress/plane strain), stress ratio,

stress level, and load-shedding rates on crack growth and closure were studied. The
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crack-tip-surfacedisplacements,nearthresholdconditions,werecomputedto showthe

extentof theresidual-plasticdeformations.An assessmentof therole of plasticity-induced

closureandresidual-plasticdeformations,in additionto oxidedebris,in threshold

developmentwasmade.

S ry S

Figure 1 - Crack configuration analyzed with strip-yield model.

Plasticity-Induced Crack Closure Model

The plasticity-induced crack-closure model, shown in Figure 2, was developed for a

through crack in a finite-width plate subjected to remote applied stress. The model was

based on the Dugdale strip-yield model [8] but modified to leave plastically deformed

material in the wake of the crack. The details of the model are given elsewhere (see

Newman [6,7]) and will not be presented here. One of the most important features of the

model is the ability to model three-dimensional constraint effects. A constraint factor, t_,

is used to elevate the flow stress (C_o) at the crack tip to account for the influence of stress

state (t_C_o) on plastic-zone sizes and crack-surface displacements. The flow stress C_ois

taken as the average between the yield stress C_ysand ultimate tensile strength C_uof the

material. For plane-stress conditions, t_ is equal to unity (original Dugdale model); and for

simulated plane-strain conditions, t_ is equal to 3. Although the strip-yield model does not

model the correct yield-zone shape for plane-strain conditions, the model with a high

constraint factor is able to produce crack-surface displacements and crack-opening

stresses quite similar to those calculated from three-dimensional, elastic-plastic, fLnite-

element analyses of crack growth and closure for fLnite-thickness plates [9].

The calculations performed herein were made with FASTRAN Version 3.0. The

modifications made to FASTRAN-II (Version 2.0 described in reference 7) were made to



improve the crack-opening stress calculations under variable-amplitude loading, to

improve the element "lumping" procedure to maintain the residual plastic deformation

history, and to improve computational efficiency. From the model, CMOD was calculated

at the centerline of the model (x = 0). In the application of the model, about 25 to 30

elements are created along the crack surface during threshold test simulations. There were

10 elements in the plastic zone (crack-tip element, j = 1, is 1% of the plastic-zone size).

The crack-tip-surface element (j = n) was 2% of the cyclic plastic zone (co). Crack-surface

displacements were calculated from the elements along the crack surface, as shown in

Figure 2(b). The crack-opening stress, So, is normally calculated from the contact

stresses, shown in Figure 2(b), by equating the applied stress-intensity factor at So to the

stress-intensity factor caused by the contact stresses at Stain [6]. This value is denoted as

(So)k. Herein, the crack-opening stress was also calculated from the contact-COD

analysis [10]. From a displacement analysis, the applied stress required to "fully" open the

crack surfaces, (So)d, was calculated.
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Figure 2 - Schematic of strip-yield model at maximum and minimum applied loading.
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EFFECTIVE STRESS-INTENSITY FACTOR RANGE AGAINST CRACK-

GROWTH RATE RELATIONS

The linear-elastic effective stress-intensity factor range developed by Elber [3] is

AKeff = (Smax - So) F "_(rcc) (1)

where Smax is the maximum stress, So is the crack-opening stress, F is the boundary-

correction factor and c is the crack length. The crack-growth rate equation proposed by

Elber states that the crack-growth rate is a power function of the effective stress-intensity

factor range (like the Paris equation). However, fatigue crack-growth rate data plotted

against the AK or AKeff, commonly show a "sigmoidal" shape. To account for this shape,

the power relation was modified by Newman [6] to

dc/dN = C (AKeff) n G / H (2)

where G = 1 - (AKo/AKeff) p and H = 1 - (Kmax/CS) q. The function G accounts for

threshold variations with stress ratio and the function H accounts for the rapid crack-

growth rates approaching fracture. The term AKo = C3 (1 - C4 So/Smax). The parameter

C5 is the cyclic fracture toughness. As cracked specimens are cycled to failure, the

fracture toughness is generally higher than the toughness for cracks grown at a low load

and then pulled to failure. This is caused by the shielding effect of the plastic wake [11].

The cyclic fracture toughness (C5), like the elastic fracture toughness (KIe), is a function

of crack length, specimen width, and specimen type. A two-parameter fracture criterion

[12] was used to model the fracture process (predict C5 as a function of crack length and

specimen width). Although the fracture term, H, was selected to fit high-rate data

approaching fracture, the term has recently been used to help explain Kmax effects at low

rates [131.

The threshold function, G, was originally selected because crack-opening stresses

from constant-amplitude loading could not collapse the low-rate data onto a unique AKeff-

rate curve. The (AKeff)th values for threshold tests were a function of stress ratio, R.

Developing models to predict threshold behavior would allow better correlation of data

and the determination of intrinsic material crack-growth properties in the near-threshold

regime. Many investigators (see for example, refs. 14-15) have shown experimentally that

the stress-intensity factor threshold under load-reduction schemes can be explained by

crack-closure behavior (or a rise in So/Smax ratio as the threshold is approached).

Recently, Donald and Paris [ 16], using a remote displacement gage, have shown that the



measuredcrack-openingloadswere"not" ableto correlatelow stress-ratiotestdatawith

highstress-ratio(non-closure)databecausethemeasuredopeningloadsweremuchtoo

high. But what causedtherisein theSo/Smaxratio from thethresholdtests?And why

doestheremotedisplacementgagemethodfail to measuretheappropriateopeningvalue

to correlatecrack-growthratedata?A numberof suggestionshavebeenadvancedto

explaintherise in theSo/Smaxratios. Amongthesearethemismatchof crack-surface

featuresobservedbyWalkerandBeevers[5]; thecorrosionproductformationon the

cracksurfaces,asobservedbyPariset al. [4] andmeasuredby VasudevanandSuresh

[17];andplasticity-inducedcrack-closureduringloadreduction,ascalculatedby Newman

[10]. Themismatchof crack-surfacefeaturesandcorrosionproductson thecrack

surfacescancausethesurfacesto comeinto contactat ahigherloadthantheloadfor a

crackwithout mismatchor corrosionproducts.Themodeof crackgrowthnearthe

thresholdis acombinationof ModeI andII (tensileandshear).Themixed-modecrack

growth,andpermanentplasticdeformations,causesanirregularcrack-surfaceprofileand

mismatch,and,consequently,thepossibilityof prematurecrack-surfacecontact. The

analyticaltreatmentof crackclosuredueto crack-surfacemismatchor corrosionproducts

on thecracksurfaceisbeyondthe scopeof thepresentpaper. Only theeffectsof residual-

plasticdeformationswereconsideredin thispaper. However,anassessmenton theeffects

of oxide-debristhicknessin relationto computedcrack-tip-surfacedisplacementsare

madefor thresholdtesting. A possiblereasonfor theremotedisplacementgagemeasuring

theincorrectopeningloadduringthresholdtestingwill beaddressedin thenextsection.
CRACK GROWTH AND PLASTICITY-INDUCED CLOSUREANALYSES

In thefollowingsections,theplasticity-inducedcrack-closuremodel,FASTRAN,was

usedto simulatefatigue-crackgrowthunderconstant-amplitudeloadingandtheASTM

StandardTestMethodfor Measurementof FatigueCrackGrowthRates(E-647)load-

reduction(threshold)testingprocedure.Thelocalcrack-tipandremote(CMOD)

displacementsnearthresholdswerestudiedunderlow (plane-stress)andhigh(plane-strain)

constraintconditions.Thetwomethods(contact-KandCOD)to calculatecrack-opening

stresslevelswerecompared.Usingthecontact-Kanalyses,theeffectsof constraint,stress

ratio,stresslevelandload-sheddingratesoncrack-openingstresseswerestudied.A brief

discussiononpossiblethree-dimensionalresidual-plastic-deformationeffectsonclosureis

presented.

Constant-AmplitudeLoading

Theoriginal crack-closure model [6] used the contact-K analysis to calculate crack-

opening stresses under constant-amplitude loading. But under variable-amplitude loading,

remote or intermittent closure occurs, such as after a single-spike overload, leaving an open
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gap between the closed surfaces and the crack tip. Thus, a crack-opening displacement (COD)

method to calculate crack-opening stresses was also developed by Newman [ 10]. Here the

opening stress was the applied stress level required to "fully" open the crack surfaces. A

comparison of the two methods for constant-amplitude loading is shown in Figure 3 for three

levels of constraint at Smax/_o = 0.2. Here the two methods gave essentially the same results.

The solid curves are the crack-opening stress equations developed to fit these results [18].

Comparisons of crack-growth predictions with test data under variable-amplitude loading tend

to support the use of the contact-K analysis method [6]. But the contact-COD method may

have bearing on crack-opening measurements recently made by Donald and Paris [16]. This

will be presented and discussed later.

Figure 3.

S o / Srnax

1.0 --

0.8 --

0.6-

0.4-

0.2-

FASTRAN

Smax / o"o = 0.2

O (So)k - contact K analysis

[] (So)d - contact COD analysis

Equation (Newman [18])

Plane strain: (z = 3

0.0 i i r i i
-1.0 -0.5 0.0 0.5 1.0

Stress ratio, R

Calculated crack-opening stresses from contact-K and contact-COD analyses under

constant-amplitude loading.

Load-Reduction Method

As previously mentioned, Saxena et.al [2] and other ASTM colleagues developed a

standard test method for near-threshold fatigue-crack-growth-rate measurement. The

load-reduction procedure was based on stress-intensity factors changing at an exponential

rate. A typical load-reduction example is shown in Figure 4. The ratio of the current

applied stress, Smax, to the initial applied stress, (Smax)i, is plotted against crack length.



Thecracklength(ci) atthe initiationof the load-reductionprocedurewas20mmin a

largemiddle-cracktensionspecimen.Thesolidcurvesarebasedona constantrateof

changein normalizedplastic-zonesizewith crackextension.ThenormalizedK-gradient,
(dK/dc)/K,was-0.08mm-1for theuppersolidcurve,asrecommended.This isequivalent

to abouta 5%changein stressevery0.5mmof crackextension,asshownby thestair-

steplines. Thestandardalsoallowsa 10%changeevery0.5mmof crackextension,if

computerized,smoothload-reductioncapabilityisnot available.Thisis equivalentto a
-1

normalizedK-gradientof -0.2mm , asshownby thelowersolidcurve. Thestandard

load-reductionscheme(uppersolidcurve)will beusedunlessotherwisenoted.

Smax

(Smax)i

1.0

0.8

0.6

Middle-crack
tension specimen
W=O0

ci = 20 mm
R = constant

AC = C - Ci

e-0.08(Ac)

0.4 10% (0.5 mm) 5% (0.5 mm)

0.2

e-0.2(Ac)

0.0
10 20 30 40

Crack length, c, mm

Figure 4. Load-reduction procedures for low-crack-growth rates.

Local and Remote Displacements - Simulated crack-growth analyses under the standard

ASTM load-reduction procedure were made after precracking an M(T) specimen for about 13

mm from a sawcut of 13 mm in length. These analyses were conducted at low and high

constraint for low (R = 0) and high (R = 0.7) stress-ratio conditions. The applied stress level

was chosen so that a high stress-intensity factor condition would exist at the start of the load-

reduction procedure. The reason that this level was chosen was because some recent threshold

testing results in the literature appear to have initiated the load-reduction test at high K levels

and the resulting AKth values are showing specimen-size and specimen-type effects [19].



Plane-stress conditions - Figure 5 shows the local COD's along the crack surfaces for a

plane-stress simulation at R = 0. The sawcut, fatigue precracking (constant-amplitude loading

at (Smax)CA = 115 MPa), and load-reduction regions are as indicated along the x-axis. The

solid and dashed curves show the results at maximum and minimum applied stress,

respectively. These results show that even at maximum applied stress (9 MPa) the crack

surfaces were still in contact near the start of the load-reduction regime. The solid symbols

shows the displacement at the centroid of the elements in the model. Although not apparent

from the figure, the crack surfaces at the crack tip (c = 51 ram) are closed at minimum load.

0.04

0.03

0.02

0.01

COD, mm 0.00

-0.01

-0.02

-0.03

-0.04

Aluminum alloy

GO= 415 MPa

(Smax)CA = 115 MPa; R = 0

o_= 1.15 (Plane stress)

MPa

Sawcut Constant Load reduction

._ _l_.-amplitudelj _1
rl-- rF" --I

I I I I I

10 20 30 40 50

x-axis, mm

Figure 5. Crack-surface displacements after load reduction under plane-stress conditions.

The remote cyclic CMOD results at c = 51 mm are shown in Figure 6 as the solid curve.

Loading and unloading followed the same curve. The dotted line is the linear-elastic behavior.

Of course, the contact-COD method gave an opening-stress ratio of 1.0 (crack surfaces never

opened) but the contact-K analysis gave a value (So)k/Smax of about 0.68. The open symbol

denotes when the crack tip opened. The dashed line shows the (So)kC A results from a

constant-amplitude simulation at the same stress-intensity factor. In an effort to assess whether

the contact-K analysis was an appropriate value to use in a crack-growth analysis, the cyclic

crack-tip displacements for both the load-reduction (solid curve) and constant-amplitude

(dashed curve) simulations are shown in Figure 7. These results show that the crack-tip-cyclic
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displacement(orcyclicstrain)for theload-reductioncasewaslessthanthatfor theconstant-

amplitudecase.Ofcourse,thecontact-CODvalue,(So)d,isnotappropriatebecausethecrack

tip experiencedcyclicplasticdeformationsand,presumablycrack-tipdamageandcrack

growth. Thus,theappropriateopeningvalueto usewouldbehigherthantheconstant-

amplitudecase,butwhetherthe(So)kvalueisappropriatewouldrequirefurtherstudyof

crack-growthratesagainstcyclicdisplacementsorcyclichysteresisenergies.Thisisbeyond

thescopeof thepresentstudy.However,reference13showedacloserelationshipbetween

thetraditionalAKeffapproachandthecycliccrack-tipdisplacementsfor asteelandan

aluminumalloyfor constant-amplitudeloading,whichwouldsupporttheuseof the(So)k
values.

Figure6.

1.0 Aluminum alloy (So) d

GO= 415 MPa ""

Srnax = 9 MPa; R = 0 ,,'"
0.8 w = 305 mm ,- /

c = 51 mm ,""

cz= 1.15 (Plane stress) ," (So)k
0.6

S / Srnax

0.4

0.2

(So)kCA

Crack-tip
opens

0.0
0.000 0.005 0.010 0.015

CMOD, mm

Remote crack-mouth-opening displacements after load reduction under plane-stress

conditions.
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Srnax = 9 MPa; R = 0

(z = 1.1 5 (Plane stress)

0.0 i i i i i i i
Oe+O le-5 2e-5 3e-5 4e-5 5e-5 6e-5

Figure 7. Crack-tip deformations for a cycle of loading during constant-amplitude loading and

load-reduction crack-growth simulations.

High-constraint conditions - To simulate more realistic crack-tip conditions, a higher

constraint factor (o_= 2) was used in the same load-reduction case (R = 0) as previously

shown. The local COD's along the crack surfaces are shown in Figure 8. Again, the solid and

dashed curves show the results at maximum and minimum applied stress, respectively. In

contrast to the plane-stress case, these results show that the crack surfaces were not in contact

at the maximum applied stress (7 MPa). But at minimum load, the crack surfaces near the start

of the load-reduction procedure and at the crack tip (c = 54 ram) were closed.

The remote cyclic CMOD results at c = 54 mm are shown in Figure 9 as the solid curves.

Loading and unloading, again, followed the same curve and the dotted line is the linear-elastic

behavior. The dashed line shows the (So)kC A results from a constant-amplitude simulation at

the same stress-intensity factor. Here the contact-COD method gave an opening-stress ratio of

about 0.62 and the contact-K analysis gave a value (So)k/Smax of about 0.4 (slightly higher

than the constant-amplitude value). Using these remote displacements and the 1 or 2%

compliance-offSet method gave an opening stress value very nearly equal to the (So)d value.

This may be why the remote displacement gage may measure an incorrect opening load during

threshold testing.
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Figure 8. Crack-surface displacements after load reduction under high-constraint conditions.
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Figure 9. Remote crack-mouth-opening displacements after load reduction under high-

constraint conditions.
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Incidentally, the recent work of Paris et.al [20] has indicated that under conditions of

remote (or partial) closure, such as that shown in Figure 8, the appropriate opening stress to

calculate the effective stress is (2/J_) Sop. The value of Sop was measured using the 1 or 2%

compliance-offSet method. As shown herein, Sop is nearly equivalent to (So)d determined from

the COD analyses. Note that the ratio of (So)k to (So)d is 0.62, very close to 2/11;.

Crack-Opening-Stress Behavior - In the following, realistic crack-growth properties for

the 2024-T3 aluminum alloy are chosen to study the effects of constraint, stress ratios, stress

levels, and load-reduction rates on crack-opening stress behavior during threshold testing. For

the thin-sheet alloy analyzed herein, a constraint factor of 2 was selected for low rates and 1.15

for high rates. A constraint-loss regime was assumed to occur in the crack-growth rate regime

of lxl0 -7 to 2x10 -6 m/cycle. The contact-K analyses were used to calculate crack-opening

stresses. A brief discussion on three-dimensional effects is also given.

Constraint effects - An M(T) specimen was fatigue precracked at a maximum applied

stress of 115 MPa at R = 0 under three conditions of constraint. First, analyses were

conducted under constant constraint of 2 and 1.15; and then under a more realistic condition of

variable constraint (o_ = 2 to 1.15 during the transition from flat-to-slant crack growth). For o_

= 2, the crack-opening stresses during the precracking stage are shown as the dashed curve in

Figure 10. The solid triangular symbol shows the initial AK value for the sawcut (no prior

plastic history). After a small amount of crack growth, the So/Smax value stabilized and the

load-reduction test was initiated at a AK of 30 MPa_/m. The crack-opening stresses during the

load-reduction phase are shown as the lower solid curve. A rise in opening stresses (and

threshold development) occurred at low values of AK. For the other constraint cases, the

precracking stage was not shown for clarity. For o_= 1.15, the results are similar to the

previous case, except that the opening values are higher and the rapid rise in opening stresses

occurred at a higher AK. The more realistic case shows a mixture of the other two cases. At

R = 0, the threshold in 2024 aluminum alloys generally occurs at a AKth value of about 3

MPa /m.

Stress-ratio effects - Figure 11 shows the precracking stage for the more realistic crack-

growth properties (o_= 2 to 1.15) under constant-amplitude loading at R = 0 and 0.7 (dashed

curves). Again, the triangular symbols show the initial value of AK at the start of the test

simulation. The results for the load-reduction phase at R = 0 are identical to that shown in the

previous figure. It must be noted that the crack-growth simulation at R = 0 must surely violate

threshold testing procedures, in that the initial AK value at the start of the load-reduction

scheme is very high. However, this may be the source of some of the
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high values of thresholds and specimen-size effects being reported in the literature. On the

other hand, the results at R = 0.7 seem to be a more realistic test condition. To initiate cracks

from sawcuts in aluminum alloys, a AK value of about 4 to 6 MPa_/m is generally required.

The crack was precracked at (Smax)CA of 135 MPa and the AK value at the start of load-

reduction phase was about 10.5 MPa_/m. The crack-opening stresses are generally near the

minimum applied stress but the analyses show a rapid rise at a AK of about 2 MPa_/m. This

corresponds quite closely to the development of the threshold value at R = 0.7 for the 2024

alloy.

Stress-level effects - Because the previous low stress ratio test simulation was conducted

at a very high precracking stress level, a much lower applied stress level was chosen for the

second test simulation at R = 0. Again, the (Smax)CA = 115 MPa results shown in Figure 12

are identical to that previously shown. But precracking at a low stress level (45 MPa), before

the load-reduction phase, resulted in a stabilized crack-opening stress level even down to very

low AK values. Thus, under the low applied stress levels, a threshold does not develop solely

due to the residual-plastic deformations. Here oxide and/or roughness contributions are

needed to predict threshold development. However, residual-plastic deformations still play an

important part in threshold development at low stress ratios because it is the combination of the

various forms of closure that ultimately contribute to thresholds.

Load-shedding effects - Crack-growth simulations were conducted at both R = 0 and 0.7

at precracking levels of 115 and 135 MPa, respectively, using two load decay rates (-0.08

and -0.2 ram-l). The results for the high stress ratio are shown in Figure 13. These results

show that the faster decay rate caused a rise to threshold to occur at a higher AK value than the

standard decay rate. The arrows indicate the value of the constraint factor. The precracking

stage was conducted in the constraint-loss regime and the minimum (z value was about 1.5.

The rise in crack-opening stresses at low AK values was caused by the residual-plastic

deformations.

Three-dimensional e_'ects - The previous results show that in-plane plasticity can cause

remote or intermittent closure under plane-stress conditions or under high applied stress levels.

The use of the constraint factor in a two-dimensional model is "averaging" the effects of three-

dimensional plastic stress states at the crack front and in the plastic wake. Three-dimensional

crack-growth and closure simulations [21] under constant-amplitude loading show that

substantially more closure occurs in the plane-stress regions than in the interior of a finite-

thickness body.
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Apparently, the plane-stress regions near the free surfaces of a specimen also play an

important role on crack-closure behavior under variable-amplitude loading. McEvily [22]

found in a test on a 6061 aluminum alloy (B = 13 ram) that a spike overload caused significant

crack-growth delay. When he machined 25% of the thickness from each surface (after the

application of the spike overload), he found very little crack-growth delay. Thus, the crack-

closure effect under spike overloads is predominantly a surface phenomenon. Do the plane-

stress regions cause more contact in a threshold test? To help answer this question, three-

dimensional elastic-plastic analyses are required and this must await a future study.

APPLICATION OF CRACK CLOSURE ANALYSES TO TEST DATA

The crack-closure model analysis will be applied to test data on thin-sheet 2024-T3

aluminum alloy. The threshold tests were conducted on M(T) specimens using the ASTM

load-reduction procedure [16,23]. In addition, test and analyses will also be compared for a

constant-Kmax test [16].

Constant-Amplitude/Load-Reduction Tests and Analyses

Hudson [24] conducted constant-amplitude fatigue-crack-growth rate tests on a 2024-T3

aluminum alloy (B = 2.3 ram) material over a wide range in stress ratio. Later, Phillips [23]

conducted threshold tests on the same material to obtain test data at very low crack-growth

rates. Recently, Donald and Paris [16] conducted a test on a similar thin-sheet 2024 alloy using

a constant Kmax test. The constant-amplitude crack-opening stress equations [18] with a

constraint factor of 1.73 (rates less than lxl0 -7 m/cycle) [25] were used to calculate the

effective stress-intensity factor for these data. The results from Hudson and Phillips data are

plotted on Figure 14 and show that the data correlates quite well, even down to threshold. The

Kmax test of Donald and Paris agreed for rates greater than 2x10 -9 m/cycle, but resulted in

lower AKeffValues than the constant-R tests as the threshold is approached. The constant-R

tests showed a slight trend with stress ratio at threshold. The higher stress ratio test had a

lower AKth than the low stress ratio tests. Phillips [23] measured a rise in crack-opening

stresses for the low R tests, but he did not measure a rise for the R = 0.7 test. However, he

observed in all cases that a higher load was required to re-initiate growth of the dormant crack

even at the high stress ratio. This may indicate that an accumulation of oxide raised the

opening load even for the high stress ratio test. Interestingly, the solid lines on Figure 14,

below rates of lxl0 -9 m/cycle, is a baseline fits to small-crack data for this alloy [26]; and these

results generally agree with the constant-Kmax test data.
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rates showing small-crack regime and constant-Kmax test results.

A comparison of measured and calculated crack-opening stresses at R = 0 are shown in

Figure 15. The solid symbols are measured values from Phillips [23] using the Elber method

[27] and the open symbols are opening values determined from Hudson's data using an indirect

method [6]. (The indirect method finds the value of opening stress at R = 0 to correlate with

the baseline AKeff -rate curve.) The solid curve is the predicted Ko values from the closure

model. Because the precracking AK levels were less than about 5 MPa_/m, the analysis did not

predict a threshold from residual-plastic deformations. The sharp knee shown by the test data

at a AK of 4 MPa_/m is the development of the threshold. Based on the literature, oxide

accumulation is suspected to cause the threshold development. The dashed lines are based on

constant constraint calculations from plane-stress to plane-strain conditions. The sharp knee at

a AK level of about 12 MPa_/m is associated with the beginning of the constraint-loss regime.

Figure 16 shows the crack-opening values from the Donald and Paris data [ 16] at R = 0

and 0.7 using the indirect method (symbols). The Kmax test results at rates lower than about

2x10 -9 m/cycle and the baseline AKeff-rate curve (Fig. 14) at higher rates were used as the

baseline data. Because the R = 0.7 and Kmax results differed at low rates, the indirect method

produced a sharp rise in opening stresses at threshold for the R = 0.7 data (square
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symbols). The low R results also showed a sharp rise at threshold. The solid curves show the

calculations from the closure model for load-decreasing and load-increasing tests. Again, the

model did not show a rise in opening loads because the AK level at the start of each test was

low (about 6 MPa_/m). For these cases, the contact-K and COD analyses gave essentially the

same results. Remote displacement gages are most likely unable to measure the very small

amount of closure for the high-stress ratio tests. But under high-R conditions, the calculated

opening load is very near to the minimum applied stress level. Thus, a small amount of

interference from roughness or oxide-accumulation may cause a threshold to develop.

To study why the model did not predict a rise in the opening stresses, the near crack-tip-

opening displacements at the start of the test threshold development (shown by the vertical

arrows in Fig. 16) are shown in Figures 17 and 18. The local COD's are shown in Figure 17(a)

at maximum load and Figure 17(b) at minimum load. The stress-intensity factor range AK (2

MPa_/m) was slightly higher than the R = 0.7 threshold value that would have developed for

the 2024-T3 alloy (about 1.56 MPa_/m [16,23]). The crack length and plastic-zone size are as

indicated on the figure. The solid curve shows the crack-surface profile. The dashed curve

shows the boundary between elastic and plastic material. Even under the high-constraint

conditions and at the low stress-intensity factor level, the residual-plastic deformations

contribute greatly to the final crack-surface profile. The CTOD at maximum load was 0.05

_tm. At minimum load, the crack-tip region is closed over a very small area (So/Smax = 0.71).

Because tests indicate that a threshold would have developed under these conditions, the other

forms of closure may be contributing to threshold development. In considering oxide-induced

closure, what oxide-layer thickness would have been required to influence crack closure at

minimum load? For the 2024-T3 aluminum alloy at a high relative humidity (95%), Vasudevan

and Suresh [17] measured peak oxide thicknesses of 0.02 _tm at R = 0.33. But oxide-layer

thicknesses are expected to be smaller at the high stress ratio condition. However, the crack-

surface displacements would also have been smaller than those shown in the figure at AKth.

Thus, residual-plastic deformations and oxide accumulation could be plausible explanations for

threshold development. The relative contribution of crack-surface roughness to threshold

development is difficult to assess.

The crack-tip-surface displacements at maximum load for the R = 0.1 test simulation are

shown in Figure 18. The CTOD was 0.07 _tm. The residual-plastic deformations (difference

between solid and dashed curves) were of the same order-of-magnitude as the near crack tip

COD's. At minimum load, the crack surfaces were closed over a large region (not shown).

Thus, a peak oxide-layer thickness of 0.02 _tm [17], in combination with the
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residual-plastic deformations, would have had a large influence on calculated crack-opening

loads and threshold development.

Constant-Kmax Test and Analysis

The Kmax test [28] has been proposed as an alternative test to obtain low crack-growth

rate data. A crack-growth and closure analysis of the Kmax test conducted by Donald and

Paris [16] is shown in Figure 19. The upper dashed line is the Kmax (22 MPa_/m) value and

the lower dashed curve is the Kmin values. The initial notch halt-length was Cn and the crack

halt-length ci denotes the start of the increasing Kmin test. The solid curve shows the

calculations from the model. At an stress ratio of about 0.8, the crack surfaces became fully

open at the minimum stress-intensity factor (solid symbol).

At the end of the test simulation, the R value was about 0.95 and the AK value was 1.2

MPa_/m. Figure 20 shows the local crack-tip-surface displacements at minimum load under

these conditions. The solid curves are the crack surfaces and the dashed curves show the

boundary between the elastic and plastic regions. The crack-tip-opening displacement was

about 0.14 tam, nearly an order-of-magnitude larger than the expected peak oxide thicknesses

[17] even under a relative high humidity. Thus, oxide-induced closure should not be an issue.

Again the contribution of crack-surface roughness is difficult to assess. But the Kmax test

results agreed reasonably well with the small-crack data on this alloy (see
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Fig. 14). Note that the residual-plastic deformations were about 50 times larger than the crack-

tip-opening displacement.

CONCLUSIONS

A plasticity-induced crack-closure model was used to simulate fatigue-crack growth and

closure under constant-amplitude, load-reduction, load-increasing, and constant-Kmax testing

on thin-sheet 2024-T3 aluminum alloy. The following conclusions were made:

(1) Crack-opening stresses under constant-amplitude loading computed from contact-K

analyses were nearly equal to those computed from a contact crack-opening displacement

(COD) method, but under threshold testing (load-reduction) simulations, the opening

stresses from the contact-K analyses were equal to or lower than those from the contact-

COD analyses.

(2) For some remote (partial) closure situations, crack-opening stresses computed from

remote displacements, using the 1 or 2% compliance-offSet method, agreed with

erroneously high values computed from the contact-COD method, but comparisons of

crack-growth predictions with measurements tend to support crack-opening stresses from

the contact-K analyses.

(3) Under low (R = 0) and high (R = 0.7) stress-ratio load-reduction simulations, analyses

produce residual-plastic deformations that cause remote closure and threshold

development for low-constraint (plane-stress) behavior and at high applied stress levels

(applied-stress-to-flow-stress ratios greater than about 0.25). For plane-strain conditions

and low applied stress levels, remote closure and threshold development were not

observed.

(4) Under low (R = 0) and high (R = 0.7) stress-ratio load-reduction simulations, analyses

produce residual-plastic deformations near threshold conditions that were of the same

order-of-magnitude as the crack-tip-opening displacements. But additional contributions

from roughness and/or oxide-fretting debris are required to develop thresholds.

(5) Constant-Kmax test simulations produce closure-free crack surfaces from residual-

plastic deformations at the high stress ratio (R > 0.8) conditions; and the crack-tip opening

displacements at minimum loads were an order-of-magnitude larger than expected peak

oxide thicknesses for 2024 aluminum alloys. Thus, contributions from oxide-fretting

debris may not have an influence on threshold development.
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